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Abstract. While reconstructing human poses in 3D from inexpensive
sensors has advanced significantly in recent years, quantifying the dy-
namics of human motion, including the muscle-generated joint torques
and external forces, remains a challenge. Prior attempts to estimate
physics from reconstructed human poses have been hampered by a lack of
datasets with high-quality pose and force data for a variety of movements.
We present the AddBiomechanics Dataset 1.0, which includes physically
accurate human dynamics of 273 human subjects, over 70 hours of motion
and force plate data, totaling more than 24 million frames. To construct
this dataset, novel analytical methods were required, which are also re-
ported here. We propose a benchmark for estimating human dynam-
ics from motion using this dataset, and present several baseline results.
The AddBiomechanics Dataset is publicly available at addbiomechan-
ics.org/download_data.html.

Keywords: dataset, human body motion, human body physics, real to
sim, benchmark

1 Introduction

The ability to accurately infer human movement dynamics (the motion and
the physical forces that generated the motion) from video cameras or wear-
able sensors would transform the fields of computer graphics, robotics, orthope-
dics, biomechanics, and rehabilitation. With measurement not only of movement
but also the internal and external forces driving the movement, researchers can
generate more realistic animations of movement [35], design wearable robotic
systems [34, 47], study injury mechanisms [3, 28], and improve treatments for
mobility impairments [24,31].

To reconstruct human movement dynamics from inexpensive sensors, we need
realistic musculoskeletal models of the human body, along with accurate esti-
mates of human pose and external moments and forces. Over the past decade,
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Fig. 1: Frames from recordings of a drop jump, tai chi, running, ballet, and squatting
(left to right) in the AddBiomechanics Dataset. The ground reaction forces are shown
with arrows on the right (orange) and left (blue) feet for representative time steps
around the shown frame. The model includes 22 body segments, 37 degrees of freedom,
and specialized joints for the knees, shoulders, and spine, which match the subject’s
mass, inertial properties, and motion capture recordings while obeying F = ma with
respect to the force plate recordings. Discrepancies between the reconstruction and the
original sensor data are within clinically acceptable tolerances [21].

the research community has made significant progress in both generating realistic
musculoskeletal models of the body [23,56,63,68] and reconstructing poses from
inexpensive sensors such as cameras [8, 16, 22, 32, 38, 42, 60, 66], sparse wearable
sensors [26], and generative models [57]. However, the measurement of external
forces outside of motion capture labs is unreliable [10,33] and thus far the mod-
els that estimate external forces from motion alone are intractable for real time
use [13, 67] or are not evaluated against measured data [17, 26, 53, 61, 62, 69, 74].
Thus their accuracy cannot be compared to the thresholds established in the lit-
erature [21]. A key bottleneck is the lack of combined motion and force datasets
to train models and assess accuracy of external force estimates against real mea-
surements for a diversity of human subjects and activities.

To address this problem, we present the AddBiomechanics Dataset, the first
large scale standardized dataset of lab-based pose and force data for a variety
of movements, currently with over 273 participants and 70+ hours of recorded
motion. This dataset can be used to train machine learning methods to recon-
struct detailed force information about human movement dynamics (e.g ., biolog-
ical torques, ground reaction moments and forces, etc.) from easily measurable
quantities (e.g ., motion capture from a cell phone camera). To provide a fair ba-
sis to compare future models that estimate joint torques and external moments
and forces acting on the body from motion alone, we propose a set of evaluation
metrics, along with a standard train/development/test split. To provide a sense
for what is possible with this data, we implement both a simple model and the
architecture from previous papers that have attempted data-driven ground re-
action moment (GRM) and force (GRF) prediction models [19, 50], and report
state-of-the-art results on the AddBiomechanics Dataset.
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To construct our dataset, we present a key improvement to the AddBiome-
chanics tool presented by Werling et al . [71], which quickly and automatically
provides estimates of model scales, motion, and dynamics that meet rigorous
standards for analyzing human motion from the biomechanics literature [21]. In
particular, the original AddBiomechanics tool is unable to process movement
trials with a mix of measured and unmeasured external forces, and compute
dynamics only when the external forces are available. These trial types are com-
mon since, to obtain quantities of diverse raw data recordings at a scale useful
for machine learning, researchers must collect during long sessions in labs with
motion capture and in-ground force plates, but instrumenting the entire floor of
a lab is prohibitively expensive. Long captures of diverse data therefore contain
frames where the subject stepped off of the force plates and experienced large
unmeasured external ground forces acting on their body. While we still cannot
use those frames in the final dataset, we present a method to use the optical
motion capture on those “unobserved forces” frames to constrain the dynamics
reconstruction on frames where all external forces acting on the body are mea-
sured, and allowing long diverse capture sessions to be optimized together. This
improvement allows us to reconstruct accurate dynamics on large, diverse and
previously inaccessible raw data sources, making the resulting dataset larger and
more diverse.

In summary, we make the following novel contributions:

– Releasing the largest dataset of human dynamics, containing per-
sonalized musculoskeletal models and corresponding experimental measure-
ments of foot-ground contact forces paired with motion capture data.

– Improving automated human dynamics data processing tools to
enable the construction of a large and diverse dataset, by overcoming a lim-
itation that required that all steps be on force plates. We discard timesteps
with steps off of force plates (often present in long continuous sessions), but
can still find dynamics on those frames where force plate data is present.

– Proposing a standard benchmark to evaluate methods that reconstruct
human dynamics information from human motion alone. For example, some
work [19,50] evaluates error only for the vertical ground reaction force, which
is a strict lower bound on taking the L2-norm between predicted and mea-
sured 3D force vectors.

2 Related Work

2.1 Related Datasets

While there are several valuable, existing datasets including both pose and force-
related data, they are currently small-in-scale, of insufficient accuracy, and/or
in a format unsuitable for the task of predicting forces (e.g ., long captures with
only partially observed experimental force data). For example, one of the largest
available datasets of human dynamics data with pre-computed full body mod-
els is presented in UnderPressure [50], with 5.6 hours of data from 10 subjects.
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UnderPressure contains joint kinematics, inertial measurement unit (IMU) data
and synchronized pressure insole data collected during various types of locomo-
tion. While the largest available, pressure insole data is of insufficient accuracy
to create or evaluate 3D dynamic simulations [7, 10,33].

There are several additional datasets, of varying size, with higher-quality
force data from expensive in-floor or in-treadmill force plates, but these datasets
have heterogeneous processing, incomplete observation data or formatting incon-
sistencies. Carter et al . [9] and Camargo et al . [6] each share nearly 20 hours of
optical marker motion capture and force data for subjects performing walking,
stairs, ramps, running, jumping, and other activities. Most datasets collected
with in-ground force plates (e.g ., Camargo et al .) have large sections of partial
force data as a subject steps onto or off of an in-ground plate, which existing
analysis tools cannot handle. Additional human dynamics datasets (most under
2 hours) include video keypoints with synchronized ground force plate data [49],
sparse IMU sets with instrumented treadmills [1, 41, 59], and traditional optical
markers with ground force plates [27, 44, 51, 52], with GroundLink [19] repre-
senting the widest diversity of dynamics with 19 different motions. We combine
these and several additional datasets into the AddBiomechanics Dataset 1.0.

2.2 Estimating Physical Forces from Motion

In computer vision and graphics, physics (either in the form of a physics engine
or constraints to represent "physical intuitions") has been applied by many re-
searchers to improve the quality of generated movements, to combat common
artefacts such as foot floating or foot sliding.

One common approach is the use of fast physics-based reinforcement learn-
ing methods [2, 39, 43, 53–55, 61, 62, 73, 75–77], generally with simplified contact
models (e.g ., “rigid box feet”) to estimate joint torques necessary to achieve
a measured motion. Another area of focus has been improving the quality of
human motion simulations (whether synthesized de novo or obtained from a
motion capture method) by leveraging “physical intuitions” about how humans
move in the world (e.g ., minimizing foot sliding, disallowing foot-ground pene-
tration, etc.). Approaches to this task have specifically targeted the problem of
visual motion quality, whether in isolation [17,26,57,58] or tied to a monocular
motion capture pipeline [4,5,40,72,74,79]. Both the physics based and physical
intuition based methods use “physical plausibility” to describe results and eval-
uate against motion data alone. Quantifying the accuracy of estimated external
forces and joint torques requires measured ground reaction force data with syn-
chronized motion that isn’t currently available. The ability of existing methods
to reconstruct experimentally valid human dynamics remains an open question.

Combined motion and force datasets have also been used on a small scale
to evaluate the models that estimate moments and forces from motion. One
approach uses measured motion and force data to reconstruct dynamics with
offline trajectory optimization methods and biomechanically accurate models
(i.e., using muscle actuators) [11,15,20,29,67]. Optimization is computationally
expensive (e.g ., 0.001x real time [29,67]), can only run on a few seconds of data
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at a time, has errors on the order of 10% of body weight compared to mea-
sured ground reaction forces [29, 67] and depends on a task-specific movement
objective (e.g ., minimize energy, maximize speed). A second approach lever-
ages motion and force data to train deep learning models to predict ground
reaction forces for specific tasks, such as running [1, 59], walking [41, 51, 52],
sidestepping [27,49], squatting [45], and stair climbing [44]. Although comparing
the accuracy is challenging due to a lack of standard evaluation metrics, these
models perform well for task-specific prediction (e.g ., 0.16 BW RMSE [1]; r =
0.93 for vertical GRF [51]). There have been few data-driven models trained on
multiple activities and evaluated on out-of-distribution movements [19, 45] and
their accompanying datasets are still limited (e.g ., less than eight subjects) with
average errors exceeding 25% of body weight.

In summary, it is currently possible to predict with 10% error foot-floor
contact forces for common activities like walking using offline optimization-based
methods [29], but no fast, accurate, and generalized models exist.

3 AddBiomechanics Dataset

Table 1: Breakdown of subject count and hours from the raw data sources.

Source Subjects Total Hours GRF Hours
Lencioni et al . 2019 [36] 50 0.52 0.37
Carter et al . 2023 [9] 50 21.60 19.80
Santos et al . 2017 [12] 49 4.90 4.90
Camargo et al . 2021 [6] 22 19.87 10.10
Tan et al . 2023 [65] 17 4.40 4.40
Moore et al . 2015 [48] 12 6.22 6.03
Falisse et al . 2016 [13] 11 0.49 0.10
Hamner et al . 2013 [18] 10 0.02 0.02
Van der Zee et al . 2022 [78] 10 5.46 5.31
Uhlrich et al . 2023 [67] 10 0.24 0.05
Tan et al . 2022 [64] 9 3.73 3.73
Wang et al . 2023 [70] 9 1.84 1.84
Han et al . 2023 [19] 7 1.70 0.52
Fregly et al . 2012 [14] 6 0.14 0.04
Li et al . 2021 [37] 1 0.34 0.34
Sum 273 71.47 57.55

Version 1.0 of the AddBiomechanics Dataset contains standardized muscu-
loskeletal models as well as position and physics information for over 24 million
frames from 70+ hours of motion for 273 participants (Table 1). Each of these
frames contains optical marker locations and ground reaction moment and force
measurements, along with estimated joint kinematics, estimated joint torques,
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and estimated center of mass kinematics. The dataset includes nine different
activity types collected from 15 publicly available raw data sources (Table 1),
captured in 12 different laboratories. Each raw data source includes experimental
optical motion capture and force plate data; refer to the corresponding publi-
cations for more details about the experimental data collection. All raw data
was run through the same processing pipeline, presented in Section 4. For the
data sources that reported demographic information, the subjects have a mean
age of 30.7 (±15.8) years (range: 6− 84), and mean BMI of 22.8 (±3.4) (range:
11.7− 34.4). The majority of the subjects are male (73%), and 23% are female.
A portion of the datasets did not contain reported age (9%) or biological sex
(4%).

Fig. 2: Activity classification. The duration of captures in each activity class is shown
on a log scale.

We manually classified the activity types in the AddBiomechanics Dataset
by visualizing the kinematics of each capture. Labels were generated from the
activities presented by each dataset. Sub-labels further classify each activity
class; for example, there are sub-labels for overground vs. treadmill walking and
running, and for walking up vs. down stairs. Any capture that could not be
clearly categorized under the main activity labels is classified as "other." For
example, several captures from [48] are subjects stepping onto a treadmill, and
some captures contain calibration motions. Figure 2 shows the duration of each
activity class within the AddBiomechanics Dataset.

The AddBiomechanics Dataset contains a variety of speeds and individual
trial lengths (Figure 3). Averaged over each trial, the majority of absolute speeds
fall between about 0.0 and 5.0 m/s. Trials were split into segments of at most
2,000 frames as a result of computational limits in the processing pipeline. The
majority of remaining trials contain less than 1,000 frames. Overall, 53.4% of
the GRF in the dataset is single support, followed by 21.2% for double support
and 25.4% for flight phase.
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Fig. 3: Distributions of speed and capture length in the AddBiomechanics Dataset. The
magnitude of speed averaged per trial (left). Trial lengths as number of frames (right).
Original trials longer than 2000 frames were split up into multiple trials segments.

3.1 Personalized Subject Models

We provide individual subject skeletons as scaled and mass-optimized versions
of the Rajagopal Full Body Model [56], which is the standard in human biome-
chanics for maximum biomechanical accuracy in modelling the physics of the
body. Recent work by Keller et al . [30] means the Rajagopal model can also be
transformed to a variant of the SMPL Model, ensuring that the AddBiomechan-
ics Dataset can be used with existing SMPL-based datasets (e.g ., [25, 46]) and
methods (e.g ., [16, 17,26,53,57,61,62,69,74]).

3.2 Evaluating Dataset Quality

It is best practice in biomechanics to evaluate dynamic reconstructions of human
movement from raw sensor data (marker locations, force plate data) using the
discrepancy between the raw measurements and what the dynamic model implies
the measurements should be [21]. These standard measurements are available in
Table 2. There are thresholds for clinical grade dynamics suggested by Hicks
et al . [21], also reported in the table. Many human modelling experts do not
reach this bar in practice [71], so passing these thresholds at scale is a significant
achievement. 12.1 hours (21.2%) of the data is classified as clinical-grade human
dynamics data by this measure, an unprecedentedly large dataset to reach that
quality bar. For overall distributions of residuals, see Figure 4.

4 Raw Data Processing and Aggregation

Raw data sources contain optical marker traces, and time synced force plate data.
It requires a substantial optimization problem to reconstruct human dynamics.
The backbone of our approach is to manually review our raw data sources frame-
by-frame to determine frames where steps off of force plates occurred, and then
run the annotated raw data through the pipeline presented in Werling et al . [71],
with the modifications described below to handle steps off of force plates.
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Measurement Mean ± Std-dev Hicks Threshold for Clinical Use [21]
Marker Error 2.17± 2.44 (cm) N/A
Linear Residual 0.046± 0.027 (BW) 0.05 BW
Angular Residual 0.11± 0.02 (BW*h) 0.1 BW*h

Table 2: Evaluating dataset quality. “Marker Error” is measured in centimeters RMS
to evaluate the quality of pose reconstruction. “Linear Residual” is force discrepancy
between model and raw data, normalized across subjects as body-weights (BW) RMS.
“Angular Residual” is torque dynamic discrepancy at the model’s root, normalized
across subjects as body-weights * height (BW*h) RMS. The Hicks Thresholds [21] for
clinical model accuracy are presented with each metric.

Fig. 4: Evaluating dataset quality. See Table 2 for descriptions of quantities.

In collecting large amounts of motion data with overground force plates, it is
common for subjects to step on uninstrumented ground and have unmeasured
forces acting on them several times during a single capture. These frames of data
are not useful for learning about human dynamics, so should be thrown away, but
that must be done after we have solved for dynamics on the remaining frames.
If we were to simply delete the frames, and solve for skeleton scaling and motion
dynamics separately on each range of frames with continuously observed forces,
we could get quite unrealistic motion, since there are no useful constraints on
the start and end conditions of each short group of frames with observed forces,
and so the optimizer can cheat with unrealistic initial and terminal velocities.
Optimizing for dynamics with the motion from frames with unobserved force
data helps prevent that from happening.

In order to construct this dataset, we needed to be able to solve for accurate
human dynamics while ignoring physical consistency on frames with steps off of
force plates, and yet not allowing any discontinuous jumps in human kinematics
when they step off of or back onto force plates. This section describes the relevant
background, and our algorithms to handle this problem.
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Fig. 5: Adapted with permission from Werling et al . [71], this figure shows the pro-
cessing pipeline we used to turn raw sensor data into accurate human dynamics, and
shows where the method described below swaps into the original pipeline from [71]

These methods are enhancements to the methods originally presented in Wer-
ling et al . [71] These algorithms are already merged into the upstream Werling
et al . [71] tool, and are available in the open source codebase.

4.1 Processing Raw Sensor Data

Biomechanical motion capture labs output optical marker traces over time, and
time-synced ground reaction force measurements (which include force, locations,
and torque for each contact) from force plates in the ground or in treadmills. It
is possible to run inverse kinematics on the locations of the optical markers over
time to produce an accurate reconstruction of motion by picking joint angles q
and bone scales s to minimize the distance between virtual markers f(q, s) and
observed markers o.

min
q

||f(q, s)− o|| (1)

It is also possible, given a skeleton model, joint accelerations and observations
of external forces ft from the force plates, to run standard inverse dynamics to
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compute joint torques.

τt = M(q̈t)−Ct − JTft (2)

We adopt standard notation that M is the mass matrix, Ct is the vector of
joint torques from coriolis forces and gravity, J is the jacobian of the contacts,
and ft is the contact forces.

Here q̈t is estimated by central differencing the joint angles, with the equation
given below.

˜̈qt =
q̃t−1 − 2q̃t + q̃t+1

∆t2
(3)

It is worth noting that noise in motion capture systems that estimate our qt
values tends to have very high frequency content, because each frame’s errors are
approximately independently and identically distributed at 100fps. This leads to
a signal to noise ratio that is 4 orders of magnitude worse after finite differencing.
We use a Butterworth low pass filter at 30Hz to process the finite differenced
estimates, which does a good job attenuating the noise in our estimates of q̈t
but makes them only trustworthy in their lower frequency components.

Returning to Equation 2, the problem now arises that in order to be phys-
ically possible, whichever degrees of freedom correspond to the free translation
and rotation of the skeleton in the world (generally the first 6, 3 for translation
and 3 for rotation) in τ must be 0. This constraint (i.e., τ [0:6] = 0) reflects the
fact that all external forces are applied by the force plate, and not by a giant
invisible robot arm at the root segment. However, there is no guarantee in the
standard inverse dynamics equations that the first 6 entries of τt will be 0. To
the extent they are not zero, they have typically been called “residual forces” in
the literature.

The goal in producing realistic digital twins of subjects is to find subject
bone scales s, positions over time qt, and bone masses and inertial properties
m such that the residual forces are minimized when we solve inverse dynamics.
Leaving out some less important variables for clarity, Werling et al . [71] optimize
the following non-convex problem to solve for s, qt, and m:

min
qt,s,m

∑
t

||f(qt, s)− ot||︸ ︷︷ ︸
Inverse Kinematics

+ ||τ [0:6]
t ||︸ ︷︷ ︸

Inverse Dynamics

(4)

The challenge with this approach is that it requires a good initial guess for
the values of qt, s, m because the optimization problem is non-convex.

In the original method, these initial guesses for qt and s are constructed
through a series of linear and convex optimization problems with marker data.
The qt initialization is then adjusted so the center of mass trajectory implied
by qt is consistent with the trajectory dictated by the ground reaction forces,
defined by the differential equation:

z̈ =
f

m
− g (5)
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where z̈ ∈ R3 is center of mass acceleration, f is the ground reaction force vector,
m is the system mass, and g is gravitational acceleration.

4.2 Fitting Continuous Dynamics While Ignoring Frames with
Missing Force Data

When all the ground reaction forces are known from experimental data, then the
entire trajectory zt is linearly determined by the inverse of mass µ, z1 and ż1.
However, given a set of frames where the external forces are no longer observed,
U = {u1 ∈ N,u2 ∈ N, . . .}, then this simple linear relationship ceases to hold.
The center of mass trajectory zt is now also dependent on the total external
forces on those frames, divided by the unknown subject mass, then integrated
over time, which makes the relationship between µ, z1, ż1, and all fui

for ui ∈ U
quadratic.

To restore linearity in the presence of unknown forces, we improve the original
Werling et al . method by explicitly solving for the center of mass acceleration
on each unobserved frame: z̈ui

for all ui ∈ U . We define an extended vector ζ
that contains our unknowns:

ζ =
[
z1 ż1 µ z̈u1

z̈u2
. . .

]
∈ R7+3|U | (6)

We define a linear system with matrix A ∈ R3(T+|U |)×7+3|U | and offset b ∈
R3(T+|U |) that maps the vector ζ onto Z ∈ R3T , a vector of concatenated center
of mass position vectors over time, and Z̈U the concatenated z̈ui

’s, scaled by a
regularization term α:

Aζ + b =
[
Z αZ̈U

]
=

[
z1 z2 . . . zT αz̈u1 . . . αz̈u|U|

]
∈ R3(T+|U |) (7)

We can construct A and b using a semi-explicit Euler integration scheme of
the center of mass trajectory to relate the unknowns ζ to the center of mass
positions, Z. We proceed in blocks:

A =

[
AZ,3 AZ,Z̈U

0 αI

]
(8)

Here, AZ,3 represents the contributions from µ ,z1 and ż1 to the trajectory,
similar to the original adjustment in Werling et al . [71]. Then, AZ,Z̈U

is the
matrix block relating our acceleration on time steps where there are unobserved
external forces is the simple time integration of the change in velocity generated
by our z̈ui

for each unobserved time step i, given as follows:

A
[:,i]

Z,Z̈U
=

[
0 . . . 0 ∆2

t I 2∆2
t I . . . (T − ui)∆

2
t I
]

(9)
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The vector b is as expressed in the original method, now concatenated with
a 0 vector in R3|U |, so that b ∈ R3T+3|U |.

Using Equation 7, we apply the pseudoinverse of A to obtain a least-squares
best fit of the initial conditions and mass of the system, ζ̂ = A†(Z − b), along
with all the α regularized center of mass accelerations on time steps with un-
observed external forces ui ∈ U and can continue with the original adjustment
process [71]. This adjusted initialization then serves as an initialization for the
final problem in Equation 4, which we adapt slightly as Equation 10 by only
including the inverse dynamics loss on frames with observed forces.

min
qt,s,m

∑
t

||f(qt, s)− ot||︸ ︷︷ ︸
Inverse Kinematics

+ I(t /∈ U)||τ [0:6]
t ||︸ ︷︷ ︸

Observed Inverse Dynamics

(10)

This new algorithm vastly expands the available data with which to construct
the dataset by enabling the platform released by Werling et al . [71] to process
motion data with observed external forces on only some time steps.

5 Benchmark for Estimating Dynamics from Motion

The key evaluation task of interest enabled by the AddBiomechanics Dataset
is estimating physical forces from an observed movement. In this section, we
describe in more detail the evaluation task, provide standard metrics relevant to
Computer Science and Biomechanics to assess the accuracy of new models, and
provide some initial baseline models and their performance on the evaluation
metrics.

5.1 Task Description

The task assumes an “off the shelf” motion capture model (e.g ., [8, 16, 26, 66])
produces a noisy time series of joint angles over time, q̃t for t ∈ [0, T ]. We also
assume that a scaled human body model is available for the subject – modern
motion capture algorithms provide this, e.g . [16]. In processing the AddBiome-
chanics Dataset and in the baselines discussed below, we use the model of Ra-
jagopal et al . [56]; future models to solve the task could employ this or other
skeletal models.

To construct a full physical simulation of our subject, we now need to solve
inverse dynamics (Equation 2) using estimated joint accelerations q̈t, and either
contact forces and moments acting at the origin of the foot ft or joint torques
τt. The simplest way to achieve this is using central differencing (Equation 3)
and filtering on our input pose estimates q̃t to estimate q̈t and using a model
to estimate contact forces and moments ft, then solving Equation 2 for com-
pute joint torques τt. However, this is only one of many possible approaches to
estimating these quantities.

To summarize, the inputs are q̃t for t ∈ [0, T ] (a time series of joint angles)
and a body model for the subject with correctly scaled bones. And outputs are
all three of the following which are consistent with Equation 2:
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1. q̈t for t ∈ [0, T ]: A time series of joint accelerations.
2. ft[: 3] for t ∈ [0, T ]: A time series of external moments acting at the origin

of the foot.
3. ft[3 :] for t ∈ [0, T ]: A time series of external forces.
4. τt for t ∈ [0, T ]: A time series of joint torques.

5.2 Proposed Metrics

Previous work has used a diversity metrics, measuring different aspects of the
problem (e.g ., r-value for vertical GRF [13], RMSE for vertical GRF [19,50]). We
propose a superset of previous metrics. We also include ground reaction moment,
which is often neglected in the literature despite contributing significantly to
joint torque estimates.

Two clear metrics to evaluate the accuracy of models are the average L2-norm
error for our ground reaction force and moment estimate f̂t and average element-
wise absolute error for the joint torque estimate τ̂t. Because estimates for q̈t are
not experimentally observed, it does not make sense to include RMSE on q̈t as
a metric. However, we can partially evaluate the quality of q̈t by checking the
RMSE of ˆ̈zt, the center of mass acceleration estimated by q̈t.

To summarize, we propose four evaluation metrics, corresponding to the four
outputs of the models, where ground truth values from the dataset are denoted
z̈t, ft, and τt (see 3), and T is the number of time steps and N is the number
of degrees of freedom in the skeleton:

1. Center of Mass Acceleration:
∑

t ||z̈t − ˆ̈zt||2/T
2. Ground Reaction Moment (GRM at foot):

∑
t ||ft[: 3]− f̂t[: 3]||2/T

3. Ground Reaction Force (GRF):
∑

t ||ft[3 :]− f̂t[3 :]||2/T
4. Joint Torques:

∑
t ||τt − τ̂t||1/NT

5.3 Preliminary Baseline Experiments

To set a baseline for future work to improve upon, we tried several trivial or
previously reported models on the data. All of these models predict f given
q̃, and then use Equation 2 to compute τt. We evaluate these baselines on the
held-out test set (Table 3). Brief details of each baseline method are reported
below.

Analytical Baseline: To evaluate performance without machine learning
or optimization, we construct a simple baseline method. We estimate q̈t using
Equation 3. Then we estimate center of mass acceleration z̈t using q̈t. The total
external force acting on the body is estimated using F = ma. Then we divide
that force up between the feet to create ground force ft[3 :], splitting the force
evenly during double support. We set ground moment ft[: 3] = 0.

Multi-Layer Perceptron Baseline: We train a simple two-layer MLP with
a hidden state size of 512 to predict ft from qt. We use as input features a window
of recent qt, our estimates of q̈t from Equation 3, and joint center locations
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Method CoM Acc. Joint Torque GRM (at foot) GRF
Analytical 4.47 m/s2 2.77 Nm/kg 6.15 Nm/kg 2.79 N/kg
MLP Baseline 1.41 m/s2 1.33 Nm/kg 0.03 Nm/kg 1.29 N/kg
GroundLinkNet on AddB 1.40 m/s2 1.34 Nm/kg 0.07 Nm/kg 1.17 N/kg
UnderPressure [50] N/A N/A N/A > 5.74 N/kg
GroundLinkNet [19] N/A N/A N/A > 3.06 N/kg
Trajectory Optimization [29] N/A N/A N/A ∼ 1 N/kg

Table 3: Above the double-line is accuracy of simple baseline methods and the model
from [19] retrained on the AddBiomechanics dataset, with errors presented as means
over the test set. Below the double-line are errors self-reported by previous work. These
are not perfectly comparable to our baseline evaluations (or each other), as they each
evaluate on their own different test sets, and use their own metrics. Where precise
conversion to N/kg errors is not possible (for example, authors only report error on
the y-component, or only report r-value), approximate numbers or lower bounds are
included to give the reader a general sense of approximate relative performance.

in the pelvis reference frame. We then use our prediction for ft to compute
z̈t =

∑
ft/m, and adjust the root-translation coordinates of q̈t to reflect our

new z̈t.
Previous Work - GroundLinkNet: Two previous papers [19, 50] have

tackled the problem of predicting ft (though not q̈t or τt) using a similar
convolution-based architecture, which we refer to as “GroundLinkNet” (where
the two models differ we use [19]). For fair comparison, we perform the same
procedure as our MLP baseline to predict all three of ft, q̈t, and τt from just
ft: the inputs, outputs, and post-processing equations are all identical, the only
difference is the model architecture is more complex and larger than the MLP.
The model is trained and tested on the same data.

6 Conclusion and Future Work

We present a large standardized dataset of high quality human dynamics. This
dataset is currently biased towards walking and running, and we plan to release
a follow-up dataset with a wider diversity of tasks.

We lay the groundwork for using this data to train models that reconstruct
accurate human dynamics information from simple motion capture. We are ex-
cited to see the integration of continued progress in inexpensive motion capture
systems with methods to infer physics from motion.

We also anticipate other exciting uses of the dataset. It could be possible to
use estimates of foot-ground contact and forces derived from this data to remove
artefacts from motion capture, like foot sliding. Another exciting application area
for the data is “real to sim”, developing more accurate human body simulators
by learning better foot-ground contact colliders from data. This data could also
be a useful additional input to motion models, and could have applications in
physical motion auto-encoders.
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