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ABSTRACT
Byte.it is an exploration of the feasibility of using miniaturized, discreet hardware for teeth-clicking
as hands-free input for wearable computing. Prior work has been able to identify teeth-clicking of
different teeth groups. Byte.it expands on this work by exploring the use of a smaller and more
discreetly positioned sensor suite (accelerometer and gyroscope) for detecting four different teeth-
clicks for everyday human-computer interaction. Initial results show that an unobtrusive position
on the lower mastoid and mandibular condyle can be used to classify teeth-clicking of four different
teeth groups with an accuracy of 89%.
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INTRODUCTION
Microinteractions can reduce the amount of interaction necessary for short tasks. The disadvantage
of microinteractions with today’s interfaces is that they require the use of hands. This limits the
use of mobile devices in dynamic, on-the-go contexts such as walking, running, and driving. Speech
recognition systemsmight address this problem, but these can often be socially disruptive. In this paper,
we present Byte.it – a system that uses accelerometer and gyroscope data to recognize teeth-clicking
gestures for subtle, hands-free interface control.

Figure 1: ISO 3950 system for tooth num-
bering [8]

Figure 2: Corresponding teeth groups
highlighted in red for (starting from the
left) front click, back click, right click, and
left click

RELATEDWORK
Facial Gestures
Cheng et al. have explored the use of a non invasive pressure based tongue interface as an input
modality for mobile and wearable devices [3]. Nguyen et al. explored non-invasive brain signals,
muscle signals, and skin surface deformation (SKD) sensing to determine the relative location and
interaction between the user’s tongue and teeth [9].
In addition to tongue, researchers have also expanded the gesture recognition capabilities to the

face. Lyons et al. introduced a new interaction modality using facial gestures and expressions to
control musical sound [7]. A similar machine vision based technology was used by Lyons et al. as a
new way for text entry method using coordinated motor action of hand and mouth [6]. While the use
of tongue, mouth, and facial expressions provide novel ways to interface with mobile technologies in
an non-invasive way, technologies that require a helmet, face mask, or a head mounted camera are
arguably cumbersome for daily usage.

Teeth Gestures
Prior research has explored teeth-clicks as an input modality for assistive technology. People with
limited motor abilities often have difficulties operating pointing devices for computer interaction.
Using bone conduction microphones, researchers have classified sequences of teeth touch sounds
and use these as commands for mouse control [5]. Bitey explored different teeth-click gestures for
hands-free interface control using a wearable bone conduction microphone [1]. Simpson et al. explored
head-tracking technology with an accelerometer attached on the side of the head for teeth-click/head-
mouse control for people with severe upper limb paralysis. The system was found to be faster than
dwell-time control and, although not faster, more reliable and less inconvenient than sip-and-puff [10].
Accelerometer and gyroscope data was also used to differentiate teeth clicks from general speech and
movement artifacts. These studies concluded that teeth clicks were significantly faster at generating
mouse button clicks than speech recognition technology [11]. However, these works were only able to
recognize occurrences of teeth clicks and were not able to distinguish between the different forms of
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teeth clicks. Moreover, they put greater emphasis on interfacing with the computer mouse. Byte.it
expands on this work by exploring the use of a smaller sensor suite (accelerometer and gyroscope) for
detecting four different types of teeth clicks for everyday human-computer interaction.

SYSTEM
The Gesture Recognition Unit (GRU) is a compact (20x20mm) custom-made Bluetooth-enabled Inertial
Measurement Unit (IMU) that measures acceleration and angular velocity in real-time. It contains an
NRF52-based MCU (BC832), a 6-axis MEMS IMU (MPU6050), a low-dropout regulator (MIC5205), a
Li-Ion/Li-Polymer charge management controller (MCP73831), and a female MicroUSB connector.
The experimental setup consisted of a 13.3" laptop in front of the participant, the GRU attached using
a double-sided skin-friendly tape, and an iPhone 7 to receive IMU data streamed by the GRU.

Figure 3: Position A of the GRU: upper
mastoid

Figure 4: Position B of the GRU: PCB lo-
cated on the lower mastoid touching con-
stantly the mandibular condyle

Figure 5: Mandibular condyle in red [2].

The current implementation contains two components: 1) an iOS app to collect and label sensor
data and to export the recorded dataset via email 2) a gesture classifier system that runs a k-NN
algorithm with Dynamic Time Warping (DTW) for IMU data classification.

We used the ISO system of tooth numbering for easier gesture identification and reference. The ISO
3950 system uses 2 digits to identify a tooth, where the first number refers to the quadrant and the
second to the tooth within the quadrant [4]. Based on this system, the four teeth-clicking gestures
are defined as follows (see Figure 2): front click, left click, right click, and back click.

STUDY
The purpose of our pilot study was to assess the possibility of using an IMU to detect different
teeth-clicking gestures for human-computer interaction. Prior work has either used IMU data to
classify teeth-clicking for assistive technology or used bone conduction microphone to recognize
different teeth-clicking for everyday human-computer interaction [1, 10]. We tested the possibility of
using an IMU to detect different teeth-clicking gestures for everyday interaction. Our study assesses
the performance of a miniaturized wireless IMU placed in a discreet position to enable the able-bodied
to interact with technology. This study is a first investigation of seamless hardware and positioning for
exploring alternative input methods for mobile computing. Two hypotheses are driving this research:

(1) H1: An IMU can be placed in a discreet position to recognize distinct teeth-clicking gestures.
(2) H2: IMU data provides comparable classification accuracy to bone conduction microphones.

EXPERIMENT 1: FINDING THE OPTIMAL POSITION
Identifying the optimal location of the sensor on the user’s head is a trade-off between having a
socially acceptable position and locating a position that provides enough sensitivity to be able to
distinguish between gestures.
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We consider that mounting the GRU behind the ear is a socially acceptable position because the
hardware is hidden from sight when looking straight at a person’s face e.g. when talking with a person.
We evaluated the location sensitivity of two positions: Position A is the upper mastoid depicted in
Figure 3 and Position B location is between lower mastoid and mandibular condyle shown in Figure 4.

Figure 6: Gyroscope and accelerometer
values for the back click gesture for the
two positions. Control data points are
shows in dashed lines and the time taken
to perform one back click gesture lies
within the range in the x-axis

Procedure
In order to avoid an arbitrary choice of the positioning of the GRU, we placed the GRU in two positions
and collected data samples to see which position gave the most distinct sensor reading. We chose
these two positions by keeping in mind the visibility of the device to the person in front of the one on
whom the sensor was mounted on. The two positions are shown in Figure 3, where first, the GRU was
mounted at the position shown in Figure 3 and second, on the position shown in Figure 4. We did a
pilot by placing the IMU on those two positions with the help of a dressing tape.

Gestures Position A Position B
Back Click 2137.49 11384.75
Left Click 3722.48 14980.77
Right Click 2255.60 10728.42
Front Click 2527.07 7518.58

Table 1: DTW distance between ges-
ture and control in A & B

Since accelerometers are sensitive to minor vibrations, we normalized the detection of rotatory
motion of the head by keeping the head at approximately the same position and also by fixing the
orientation of the GRU while recording every new gesture sample for a gesture class. However, the
length of each sample varied even for the same gesture.

The MPU6050 IMU has a sample rate of 10 Hz. In order to discount the high frequency noise in the
input signal, we used a low pass filter with an α value of 0.2. We calculated a running threshold for
each data point using the following formula:

current_accx = α · accx + (1 − α) · current_accx ,

where x represents one of the three dimensions.

Results
We recorded a total of 100 gesture samples, across all teeth-click classes plus control, in the two
positions discussed above. We obtained 10 samples per gesture class. To visualize the data, we made a
3d plot by averaging the x , y, and z values of the accelerometer and gyroscope data. We also recorded
still gesture samples for both positions as our control. From Figure 7, it is clear that position B has less
clustered data points than position A, suggesting a better sensitivity for teeth-clicking movements.
The control data of the gyroscope shown in orange show that the angular movement is minimal.
Accelerometer readings, on the other hand, showed that both the gesture and the control readings
similarly formed data cluster, making it difficult to make a distinction between the two positions. This
difference between accelerometer and gyroscope readings also shows how gyroscope readings were
more sensitive for teeth gesture detection than accelerometer readings. We depict the accelerometer
and gyroscope values for the back click gesture in the graphs in Figure 6 by taking the average of
accelerometer and gyroscope data across all participants. Since the length of the accelerometer and
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gyroscope values for the gesture samples vary even within the same gesture class from the same
participant, the averaged values are not representative of the actual starting and stopping time of
doing a single back click.

Figure 7: Gyroscope plots of gestures vs
control samples. Orange data points are
control and blue data points are gesture
samples. Triangle shows the start of a ges-
ture.

To further corroborate this result and to find numerical differences in the time series data between
the control and the gestures in the two positions, a DTW distance measure was computed between
the IMU readings of the gesture and control. Since DTW is a measure of similarity between two time
series data, greater the DTW value, more distinct the two time series measures. These values can be
seen in Table 1. Therefore, IMU readings from position B were, in general, more distinct than those
from position A. Paired t-tests for each of the gestures revealed a significant effect of position on
Position B over Position A (t = -6.54, df = 3, p < 0.01). Consequently, Position B has a better sensitivity
for teeth-clicking movements. We have also shown that an IMU can be placed in a discreet position
behind the ear, i.e., at Position B with permanent contact with the mandibular condyle which provides
improved sensitivity, confirming our H1 hypothesis.

EXPERIMENT 2: TEETH-CLICKING CLASSIFICATION ACCURACY ON OPTIMAL
POSITION
The experiment used a repeated-measures, single-factor design. All participants performed the 4
gestures (left, right, front, back). The order of the gestures was counterbalanced using randomization.

After determining the optimal position of the GRU at Position B, data samples were collected from
participants for the four different gestures. We first informed each participant of the purpose of the
study, explained them how the teeth-clicking sensor worked, and attached the sensor on Position
B. We asked the participants to practice the four different gestures. Before starting recording, they
were asked to remain as still as possible and keep their sight anchored at the computer screen to
reduce the number of motion artifacts. Participants were shown the images in Figure 2 and asked
to carry out the gesture corresponding to the teeth highlighted in red. The experimenter prompted
the participant to initiate performing the target gesture and do a thumbs up when done. This was
repeated 10 times per each of the four gestures. Using the mobile app, the experimenter created a
class for each gesture and recorded the samples. At the end, participants were asked to report any
feedback about the experiment. The experiment lasted 15 minutes in average.

Results
We used a k-nearest neighbors (k-NN) algorithm with DTW as a distance metric to classify the
distinct teeth-clicking gestures. Due to our small dataset, we we opted for a leave one out (LOO)
cross-validation method for testing, where we separated the data n times into a training set of
size n − 1 and a test set of size one. Since we did not do any hyperparameter tuning, we did not
use a validation test set. We obtained a test accuracy score of 89%. Prior work from Ashbrook et

CHI 2019 Late-Breaking Work CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

LBW2310, Page 5



al. showed that bone conduction microphone based teeth-click classification was possible with
an accuracy score of 94% under laboratory setting [1]. However, given that this prior work made
personalized classification models for each participant and had an average accuracy score of only
78%, our generalized classification model accuracy score using an IMU is comparable to that using
bone conduction microphones, confirming our H2 hypothesis.

CONCLUSION
Byte.it is an exploration of the feasibility of using miniaturized, discreet hardware for hands-free teeth-
clicking as input for wearable computing. Initial results show it is possible to classify teeth-clicking of
four different teeth groups with an accuracy of 89%. Initial results show that system miniaturization,
unobtrusive positioning, and high gesture recognition rate could enable seamless interactions with
mobile devices.
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