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Figure 1: This paper contributes a toolkit for researchers interested in detecting an increased cognitive load and actual screen
time.We present (1) a Do-It-Yourself guide to easily build (2) a Head-mounted Eye Recorder based on a regular webcam.We use
the (3) camera’s raw data as an input for our (4) Opensource Software Toolkit, which utilizes a pre-trained machine-learning
model we developed based on a 3D Convolutional Neural Network. The (5) results can then be shared cross-platform via a web
interface.
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ABSTRACT
Studies show that frequent screen exposure and increased cognitive
load can cause mental-health issues. Although expensive systems
capable of detecting cognitive load and timers counting on-screen
time exist, literature has yet to demonstrate measuring both fac-
tors across devices. To address this, we propose an inexpensive
DIY-approach using a single head-mounted webcam capturing the
user’s eye. By classifying camera feed using a 3D Convolutional
Neural Network, we can determine increased cognitive load and
actual screen time. This works because the camera feed contains
corneal surface re�ection, as well as physiological parameters that
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contain information on cognitive load. Even with a small data set,
we were able to develop generalised models showing 70% accuracy.
To increase the models’ accuracy, we seek the community’s help by
contributing more raw data. Therefore, we provide an opensource
software and a DIY-guide to make our toolkit accessible to human
factors researchers without an engineering background.

CCS CONCEPTS
• Computing methodologies ! Activity recognition and under-
standing; •Human-centered computing!User interface toolk-
its.
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1 INTRODUCTION
Recent research has shown that long exposure to screens can lead to
screen dependency disorder [28] and Campbell [3] has shown that
high screen exposure among children results in higher probabilities
of depression diagnosis, compared to low screen users. To deter-
mine screen time, many applications o�er counters and app timers,
such as those implemented in smartphones. However, these are
estimations because it is unknown whether the user indeed looked
at the screen or not. Along with prolonged screen time, frequently
occurring high cognitive loads can worsen the aforementioned ef-
fects [25]. Thus, tracking both screen time and changes in cognitive
load is vitally important. To determine cognitive load, research
proposes the use of eye-related measurements such as pupil diame-
ter [23], blinks [22], and pupil oscillations [8].In contrast to prior
work, in EyeKnowYou, we measure both cognitive load and actual
screen time using a 3D Convolutional Neural Network.

Following a Human-Centered Machine Learning [14] approach,
we interviewed prospective users to understand the user needs.
We used a single webcam, mounted on an eye-tracker frame to
the head, which records the user’s eye. This way, by leveraging
spatio-temporal features, we trained a deep learningmodel to detect
an increased cognitive load and track whether the user is actually
looking at a screen. Based on the user needs, we developed a soft-
ware toolkit to interact with our model. We collected data from
17 participants with diverse ethnic backgrounds and eye colors,
and we conducted our data recording in di�erent environmental
settings and under varying lighting conditions [24]. Although de-
veloping a robust and generalized model under such conditions was
challenging, we achieved 70% accuracy with a comparably small
training set. Figure 1 shows an overview of the paper. In summary,
we contribute with:

• A straightforward DIY opensource software toolkit and eval-
uation of its usability.

• All the source codes we developed and trained parameter
values of the neural network for the research community
to build upon and towards a new methodology for human
factors researchers to measure cognitive load simultaneously
with actual screen time.

2 RELATEDWORK
For many decades, researchers exploring social implications of
technology have looked into how people track di�erent aspects
of their lives [6, 26]. More recently, the increase in multi-device
environments have sparked a renewed interest in how people spend
time using their devices [18]. Studies in this area have often been
conducted using software installations on the users’ target devices,
whereas some studies were done without any user interface [7, 15].
Also, there has been released screen time tracking apps through dif-
ferent app stores, which provide a separate interface to understand
the tracking process [4].

A meta analysis [5] has highlighted that 16 eye-related measure-
ments have shown correlations with cognitive load. Meanwhile,
eye-tracking [32] is a common method to estimate cognitive load
where some researchers [9] have used eye-tracking measures like
pupil dilation and spontaneous blink rate while using eye-tracking
to identify focus point on the screen. Yang et al. [30] have used
eye gaze to measure cognitive load in real-world driving scenarios
while Fridman et al. [10] have used a camera to measure cognitive
load using the video feed of the eye by running a machine learn-
ing approach, particularly Deep Learning algorithms. This can be
identi�ed as the most related work as it utilizes spatio-temporal
features from video recordings of the eye to determine the level of
cognitive load.

Researchers have also attempted to identify gaze and recognize
objects from such re�ections [11], although the capability was lim-
ited. A few researchers have looked into using corneal surface
re�ection to determine the context of a scene [1, 20, 21]. Previous
work have explored the use of a single camera capturing the spher-
ical corneal re�ections for lifelogging [16, 17] and reconstructing
scene which the user is observing. [19, 29]. Although not explicitly
shown yet, we can infer on the user’s actual screen time.

3 EYE KNOW YOU
3.1 Motivation
Two major limitations in prior works are the incapability of de-
tecting whether the user is actually looking at the screen and the
inability to sum up the overall screen time across multiple devices
(personal and non-personal devices). Looking at the corneal surface
re�ection [19] of the eye at any time could reveal such informa-
tion, overcoming both issues. To achieve this, we decided to train a
3D Convolutional Neural Network [13], given the rapid advance-
ment and demonstrated superior capabilities of this technology.
We conducted three semi-structured interviews with experts. The
interviewees were practitioners in the �eld of User Experience and
either held a Master’s or a PhD degree. All of our interviewees use
EDA measurement as the state-of-the-art method to determine cog-
nitive load. Not surprisingly, P1 stated di�culties with processing
EDA data. “This [data processing] is actually software engineering
work.” P2 mentioned that she was looking for a solution to automat-
ically trigger cognitive load sensing just in the moment the user is
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looking at the screen. After we described our envisioned system
capable of sensing cognitive load and context, such as screen time,
all three interviewees sounded interested.
3.1.1 System Requirements. Based on prior experience and expert
interviews, we derived these system requirements:

• Simple data recording with or without labels along with
timestamps plus save and export function,

• Both post-processing and real-time classi�cation
• Easy installation process with step-by-step guidelines
• Resource considerate, as end-user hardware has limited pro-
cessing power to handle all calculations

• Visualisation of input and output data enabling e�cient
understandings and sharing of results

• Non-expert friendly – coding or programming expertise is
not required

3.2 Toolkit
We designed EyeKnowYou, a self-contained DIY toolkit utilizing
a simple webcam mounted to the head focusing on the user’s eye.
This way, we can determine an increased cognitive load using phys-
iological properties and simultaneously identify whether the user is
actually looking at a screen through re�ections of the eye’s corneal
surface. Initially released as a research apparatus, we envision a
future where EyeKnowYou becomes a wearable life logger or a class-
room tool for teachers to better understand student engagement
and cognitive load. Using a single inward looking camera generates
lower power consumption compared to using an additional world
camera to get the context. Moreover, privacy concerns are also not
an issue [31]. Suitable for our device, we provide an opensource
software toolkit with a graphical user interface enabling easy-use
for researchers without technical background. In the Appendix, we
explain how to replicate our device. We opensource all the source
codes, learned weights of the neural networkmodel, and our dataset
for tech-savvy researchers enabling for a further development.

3.2.1 Installing and Connecting to the Toolkit: Our Java-based soft-
ware toolkit is available through our website1. It requires having
the Java RunTime Environment2 (JRE) installed. A user can check
whether JRE is installed by simply running the “PythonModuleIn-
staller.jar” �le. The core of our toolkit utilizes Keras3, which runs on
top of the Tensor�ow4 backend to run the neural network, which
requires a 64-bit processor. A “readme.pdf” �le in the installation
folder contains further guidelines including how to check whether
your processor and operating system architecture match the re-
quirements. Executing ”PythonModuleInstaller.jar” �le will install
all the dependencies including Keras and Tensor�ow.

After both packages are successfully installed, the machine is set
to run the EyeKnowYou software toolkit. Now, the camera can be
plugged in to the machine. MostWindows operating systems do not
require a manual driver installation. Once the camera is successfully
installed, disabling the camera’s autofocus and manually setting
the focus is required. We provide a video5 demonstrating how to
carry out this using the default “Camera” application of Windows

1https://sites.google.com/view/eye-know-you/home
2https://www.oracle.com/technetwork/java/javase/downloads/
3https://keras.io
4https://www.tensor�ow.org
5https://vimeo.com/360496718

10. This step is only required once when the camera is plugged.
For users using Linux-based environments, disabling autofocus is
unnecessary, given our source code handles this itself. Executing
the “EyeKnowYou.jar” will run our software.
3.2.2 Handling the Toolkit (Walk-through): The EyeKnowYou toolkit
enables the user to record data, classify, and export results. To do
this, the researcher is required to set some parameters, which this
walk-through will describe. EyeKnowYou consists of four indepen-
dent tabs and each tab carries out a di�erent task. The following
subsections explain what each tab does and how to execute it. All
the tabs are shown in Figure 2.

Test Camera: When trying the app for the �rst time or connecting
a new camera, the “Test Hardware” tab is useful to check whether
the plugged camera is fully working. The user will be able to select
the camera (Internal or External Camera) from the dropdown menu.
Clicking "Start testing" after selection, will visualize the video.

Record Data: This tab (see Figure 2–a) helps recording data and
saving in HDF5 format. The �rst �eld is "Camera", to which the
researcher should select the DIY webcam that is pointing towards
the eye. In the “File Directory” area, the storage location of the
recorded data needs to be speci�ed. The last two optional parame-
ters – Scene and Cognitive Load – can be used for labelling your
data if the intention is to collect data to contribute to the dataset. A
terminal window will pop up after the “Start collecting” button is
pressed where the user needs to follow the instructions displayed.

Classify Recorded Data: Using this tab (see Figure 2–b), the pre-
viously recorded data �les can be processed. The data �les are
processed in 64-frame batches and classi�ed by our pre-trained
model (context – looking at a screen: yes/no, and cognitive load:
high/low). This results in a resolution of about 4 seconds. Note that
the calculation requires a considerable amount of processing power.
Closing all or some other applications is recommended depending
on the computational power available. The results will be stored in
the user-chosen �le location in human readable *.csv format, which
can be opened in any spreadsheet application.

Visualize Data: In this tab (see Figure 2–c), the operator can replay
video frames from a �le previously recorded (in HDF5 format). This
option is useful to visually inspect the recorded data. To visualize
and share the classi�ed results we developed a Webapp which
shows the cognitive load and screen time over the duration of the
recording.

3.3 Usability Test
To gain an initial impression on our toolkit’s usability, we ran a
pilot user study with three young HCI researchers aged 23, 25, and
29 – all males with some experience in running studies. The overall
average SUS score across these participants was 56% (SD=16.5). The
major problem all participants mentioned was the image cropping
procedure at the beginning of the data recording process. Several
software bugs our tool had at the time provoked the low SUS score.
However, all participants were able to achieve the set goals. P3
stated: "The guide was very easy to follow, as many videos illustrated
the procedure [...] The interface was also intuitive."

Following the outcomes of the pilot study, we identi�ed the weak
points of the application and �xed the usability issues. Then we
recruited 8 new participants (age M=26.75, SD=3.6) who were re-
searchers in the HCI �eld. They were familiar with the concept of
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Figure 2: Showing the following tabs: a) Record Data, b) Classify Recorded Data, and c) Visualize Data.

cognitive load and running a NASA Task Load Index. The partici-
pants were given an oral explanation on our toolkit’s functionality
and the upcoming task. We also printed out the walk-through guide,
which we read aloud to the participant after our oral explanation.
The task consisted of six parts: (1) Installation of the software toolkit
at the given workstation, (2) Plugging and testing the DIY head-
mounted device, (3) Disabling the camera’s autofocus following the
video guide, (4) Recording data from the given user under two condi-
tions (a: playing a 1-min youtube video, b: making the user read the
�rst page of a printed research paper), (5) Visualizing the collected
raw data, (6) Classifying the data, and (7) visualizing the classi�ca-
tion results. Towards the end of the study, we asked the participant
to �ll out a Standard Usability Scale Questionnaire (SUS) [2] and
to discuss his experience. The SUS is a well-established method in
HCI calculating a usability score by deploying 10 questions that
are rated on a 5pnt Likert scale. The entire study took about 30
minutes.

3.3.1 Results. The overall average score across 8 participants is
87.81% (SD=8.96) which is a 31.81 points improvement of what we
saw during the initial pilot. This score is well above the industry
standard ‘A grade’ threshold, which is 80.3%. All the participants
successfully completed the tasks. P4 stated "I would even love to
have automated neural network training inside the application", going
towards towards our future vision of the application. P7 gave us
suggestions to further improve the visualization of the recorded
data by providing the image information. This feedback was useful
to constantly develop our software toolkit further to enable greater
usability.

4 DEVELOPMENT AND EVALUATION
This section provides details on how the back-end of the toolkit is
developed. The process consisted of several stages; Data collection
for the dataset, model development, and model evaluation.

We collected data using the device from a set of 17 users (12 male
and 5 female) aged between 18 to 38 years (M= 26.9). To create a
robust model, we did not control characteristics given the many
di�erent eye-colours and shades, di�erent eye-sizes, and the 12 dif-
ferent ethnicities (German, Sri Lankan, Chinese, Indian, Australian,
French, Spanish, Colombian, Singaporean, Iranian, Malaysian, and
Indonesian). The data collection was conducted in various lighting
conditions. Each participant was asked to carry out 4 tasks, with
each task lasting about 4minutes. Between each task, the participant
was asked to remove the device and then re-wear it after a small rest
to avoid over�tting to the position. We collected EDA data from the
participant during the entire session. After each task, participants
self-reported cognitive load via printed NASA-TLX [12] forms. We
used n-back tasks to induce cognitive load. n-back secondary tasks
are shown to induce a high cognitive load [10].

4.0.1 Tasks. Working in front of screens also involves documents.
Therefore, we selected four tasks involving screens and documents
and one task from each type was loaded with a secondary number
based 1,2-back task to emulate high cognitive loads. Following are
the labelled tasks the user carried out:

• Writing down numbers from 1 to 50 on a sheet of paper - No
screen, low cognitive load

• Completing 3 mazes within 4 minutes while carrying out a
secondary 1-back task - No screen, high cognitive load

• Watching a relaxation video of the participant’s choice -
screen, low cognitive load

• Watching a relaxation video while carrying out a secondary
2-back task - screen, high cognitive load

We considered the tasks without n-back tasks as low cognitive
load and tasks with n-back tasks as high cognitive load. However,
to have secondary measures of this, we used the self reporting from
NASA-TLX (mental demand isolated; 50% or more was considered
as high cognitive load) and EDA data. We only included the data
which had all the three measures (n-back presence, self-reported
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Figure 3: In our 3D CNN architecture a NN extracts features from video input as a set of frames at consecutive time samples.
Our network has 1152 3D convolution kernels that go through spatial and time axes to extract features.

mental demand and number of SCR peaks in EDA) reporting the
same cognitive level label. We stored all the �les in Hierarchical
Data Format 5 6 (HDF5) for ease of management. The entire dataset
is available from our website (see section 3.2.1) for research pur-
poses and all source codes are published to read, write, modify, and
concatenate HDF5 data.

We used a custom 3DCNN [13] as our neural network (see �gure
3). During our �rst few testing trials, we found that cutting o�
data related to the �rst and last 60 seconds of each task from the
dataset, improved the model’s accuracy. A possible reason for such
an improvement is that the user requires adaption to the task before
a fairly steady cognitive level is reached, and upon reaching task
completion, e�orts are reduced. In total we had 3128 instances to
train our model and 800 instances to test our model. We evaluated
two di�erent methods for classi�cation. The �rst approach was
to use two independent models to detect screens and determine
cognitive load, while the other involved using a single network to
classify both. By using a subset of the same participants performing
a mix of same and di�erent tasks in di�erent sessions, we achieved
a 70% and 72% accuracy respectively for screen and cognitive load
classifying two classes. The single network did show consistent ac-
curacy and scored 50% classifying four classes similar to a cascaded
dual class model (70% ⇥ 72% = 50.4%), where the random accuracy
is 25%. We observed that false-positives and false-negatives to be of
similar amount. Based on these results we derive several �ndings
along with methods to improve the accuracy. One consequence is
having more data, which is likely to increase model robustness. We
envision that other researchers are going to contribute with their
recorded datasets to further elevate the accuracy.

5 CHALLENGES, LIMITATIONS, &
OPPORTUNITIES

Building a generalized model working across users stemming from
di�erent ethnic backgrounds seems to be a great challenge. Pre-
vious work that employ a similar technique to detect objects on
the corneal surface re�ection [11] have selected homogeneous eye
types. In contrast, we did not have this selection criteria. From the
interviews and follow up studies, it is clear that EyeKnowYou could
be a very useful tool. The main limitation is the accuracy of our
model. We acknowledge that a greater number of users is likely to
increase the model’s accuracy. Since our data set along with the
source codes to record and modify the data set is opensource, col-
laboratively increasing the size of the data set is an option to further

6https://www.hdfgroup.org/solutions/hdf5/

improve the accuracy [27] and robustness of the underlying model.
To broaden the applicability for other areas, identifying other ob-
jects than screens (e.g., people, activities), may also be particularly
important for research purposes. In order to do so, our work is
opensource, enabling advanced users to modify a few layers of the
Neural Network and start with our pre-trained weights classifying
a greater variety of classes.

6 CONCLUSION & FUTUREWORK
With this paper, we contributed a new concept to sense increased
cognitive load simultaneously with actual screen time. We pre-
sented a straightforward DIY software toolkit for human factors
researchers. This toolkit can be used to collect labeled data and
process them using our neural network. Also, advanced users can
access all the source codes and our dataset to further develop the
tool and model, such as to apply it in di�erent contexts. They can
also use new models to be used with our software toolkit.

For future work, we envision our toolkit to grow with a large
amount of raw data generated by the community. This will help us
to build a more robust and generalizable model contributing to a
reasonable accuracy. To further boost accuracy, we suggest training
separate models for speci�c ethnic groups or recording a large
volume of users, such as 92, which Fridman et al. [10] demonstrated.
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A APPENDIX
A.1 Step 1: Hardware Preparation
For the camera, we used theMicrosoft HD6000 life camera7. As illus-
trated in Figure 4, we removed the plastic enclosure and separated
both PCBs. Keeping them plugged in together is also possible.

Figure 4: Before (a) and after (b) removing the enclosure of
the camera. Both PCBs have been detached from each other.

Since we only utilize visual information, we can remove or de-
solder the microphone to reduce visual obstruction, as shown in
Figure 5. However, omitting this step does not a�ect the function-
ality.

Figure 5: Cutting o� the microphone at both ends; at the
PCB (c) and before it enters the cable duct (d).

Figure 6: Mechanically pulling o� the push button – cap-
tured from top (e) and side (f) view points.

We also carefully removed the white push button resting next to
the black focusing lens box (see Figure 6). Again, de-soldering is an
7https://amzn.to/2Hpqqrt

option. Removal makes it easier to �t the camera into the mounting
frame, although not mandatory for operation.

Next, we removed both blue indicator LEDs, given its creation of
unwanted re�ections on the eye ball, distracting the user (see Fig-
ure 7). We de-soldered them, however, covering them with opaque
tape/glue or mechanically destroying them is also possible.

Figure 7: De-soldering indicator LEDs; before (g), after (h).

After careful execution of all the previous steps, we plugged both
PCBs back together as shown in Figure 8. A screw tightens both
PCBs.

Figure 8: Before (i) and after (j) plugging the two PCBs

We created a video8 showing how to carry out step 1 a-j.

Figure 9: 3d printed parts (k) of the head-mounted frame.
The socket to mount the real world camera is not required.
The other camera socket is to be attached to the sliding rod,
which goes into the head mount (l). We slide the rod all the
way in until a gap of ~5mm.

8https://vimeo.com/361288458

https://amzn.to/2Hpqqrt
https://vimeo.com/361288458
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A.2 Step 2: Final Hardware Assembly
We used the eye tracker frame Pupil Labs designed as the head
mounting frame, which can be purchased at the Shapeways web
store9. The 3d printed frame comes in four parts as depicted in
Figure 9. Mounting the real world camera is not needed as crossed
out in Figure 9–k. Fixing the camera socket with the sliding rod
just about 5 mm before the end point (see Figure 9–l) provides
optimal results for capturing the entire eye of people with di�erent
physiological characteristics (ethnicities, eye-sizes, face sizes).

Figure 10: Amoment before (m) and after (n) �tting the cam-
era in to the camera socket.

Figure 10 shows how the camera should be �tted upright into
the socket. The colored wires from the PCBs pointing towards the
bottom indicate the corrected position.

Then, as shown in the Figure 11–o, the camera can be enclosed
by the lid. Thereafter, the USB cable should be pushed to the hooks
following the frame path (see Figure 11–p). A similar DIY guide

Figure 11: Closing the lid (o) and attaching the cable to the
frame (p).

for the eye-tracker is also available on the Pupil Labs’ website10.
However, since we do not use IT, this setup is simpler and we
provide more details, making it easier for non-experts.

9https://www.shapeways.com/product/LQJJK2CHQ
10https://docs.pupil-labs.com/#diy

https://www.shapeways.com/product/LQJJK2CHQ
https://docs.pupil-labs.com/%23diy
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